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Abstract

This paper addresses the need for accurate predictions
on the fault inflow, i.e. the number of faults found in
the consecutive project weeks, in highly iterative pro-
cesses. In such processes, in contrast to waterfall-like
processes, fault repair and development of new features
run almost in parallel. Given accurate predictions on
fault inflow, managers could dynamically re-allocate
resources between these different tasks in a more ad-
equate way. Furthermore, managers could react with
process improvements when the expected fault inflow
is higher than desired. This study suggests software
reliability growth models (SRGMs) for predicting fault
inflow. Originally developed for traditional processes,
the performance of these models in highly iterative pro-
cesses is investigated. Additionally, a simple linear
model is developed and compared to the SRGMs. The
paper provides results from applying these models on
fault data from three different industrial projects. One
of the key findings of this study is that some SRGMs
are applicable for predicting fault inflow in highly it-
erative processes. Moreover, the results show that the
simple linear model represents a valid alternative to the
SRGMs, as it provides reasonably accurate predictions
and performs better in many cases.

1. Introduction

An essential characteristic of highly iterative pro-
cesses is the development of new features running al-
most in parallel to fault repair [3]. At the beginning
of a project, project management allocates resources
in terms of man-hours to both of these activities. The

number of faults that have to be repaired play a ma-
jor role for managing those resources [16]. An unex-
pectedly large number of faults poses challenges to re-
source planning and, thus, to meet project goals. Either
additional man-hours have to be provided or existing re-
sources have to be reallocated. In the former case, the
project might exceed the estimated costs. In the latter
case, development might not be able to deliver all the
planned functionality, because part of the resources are
used for fault removal instead.

An important measure to support management in
project planning is the fault inflow. This fault inflow
is the number of faults measured during several con-
secutive weeks within a project, i.e. the distribution of
faults over a period of time during a project. Predict-
ing fault inflow would enable management to plan for
required resources in advance and to dynamically re-
allocate them. Furthermore, managers could introduce
process and quality improvements beforehand in case
the inflow of faults is predicted to be higher than ex-
pected. Thus, costs could be controlled more accurately
and a shortage of resources can be prevented.

This study is based on fault data from three large-
scale software projects at Ericsson AB. All projects fol-
low a highly iterative development process. This pro-
cess implies a weekly or more frequent delivery of new
system versions spanning almost the complete project
time, while testing begins early in the project and pro-
ceeds continuously. In such highly iterative contexts,
information on fault inflow is particularly important for
project planning to reach the project goals, as the chal-
lenges to manage iterative processes are more intensi-
fied.

The study’s aim is to support management with a
simple method that delivers reliable predictions on the



fault inflow at reasonable costs. To be cost-effective, the
method shall be based either on existing data or on data
that can be collected with low effort.

This paper suggests software reliability growth
models (SRGMs) for predicting fault inflow. Partic-
ularly, this study covers the following models: Gom-
pertz [9], Delayed S-shaped [22], Yamada exponen-
tial [23], and Goel-Okumoto [7]. These models are
widely used to predict the release date of a software
product. SRGMs base their predictions on data from
the testing process and, thus, reflect the testing, the fault
introduction and the fault finding processes. Therefore,
SRGMs are, in our opinion, potentially suitable for pre-
dicting fault inflow as well. One additional benefit of
SRGMs is that their use can be easily automated and
supported with tools.

Based on our observations of the fault inflow, this
study presents an additional linear model that appears
to reflect fault inflow of highly iterative processes and
is simpler than the tested SRGMs.

This study addresses the following research ques-
tions:

RQ 1 How do the models under study perform in
predicting the fault inflow for the remaining project
time?

RQ 2 How do the models under study perform with
regard to short-term predictions?

For RQ 1, we further test the following hypotheses:

H0: There is no significant difference between the
models in their performance of fault inflow predic-
tion for the remaining project time.

H1: There is a significant difference between the mod-
els in the performance of fault inflow prediction for
the remaining project time.

As a result, the study shows that SRGMs can be used
to predict fault inflow. Additionally, it is shown that the
proposed linear model delivers accurate predictions as
well and thus, provides a valid alternative to SRMGs.

The remainder of this paper is structured as fol-
lows: The next section, Section 2, refers to existing re-
search related to this study. In Section 3, this study’s
design is explained. Section 4 presents the results of
this study. In the end, the findings of this study are dis-
cussed in Section 5, while the conclusions and future
work are covered in Section 6.

2. Related work

In general, not much research addressing the pre-
diction of fault inflow can be found. The one exam-

ple that was identified is presented by Staron and Med-
ing [16]. In their work, the authors propose a method
for predicting the inflow for three weeks in advance
based on project metrics and on existing fault data.
This method is then compared to other estimation prac-
tices. One of their findings is that the authors’ predic-
tion method is more efficient than, for instance, expert
estimations because the prediction results are more ac-
curate and can be obtained easier.

In contrast to Staron and Meding, our study con-
siders the use of SRGMs. Moreover, the predictions in
our study are solely based on historical data as they are
already available and require only little configuration.
SRGMs have been deeply discussed in literature and
have often been applied in research and industry alike
for deciding on a release date [8]. To our knowledge,
however, SRGMs have not been used for fault inflow
predictions. Several authors claim that SRGMs are not
applicable in practice at all as the models’ assumptions
are often violated [21, 6]. However, other studies have
shown that SRGMs perform well in spite of such viola-
tions [17, 2].

Other approaches for predicting faults incorpo-
rate software metrics (e.g. [14, 13]) or inspection data
(e.g. [18]). Besides, current research also investigates
the use of Bayesian networks. Such networks are, for
instance, used as support for expert estimations [4] and
to define relations between software metrics [15]. These
approaches, however, will not be covered in this study
as they require different data that are either hard to col-
lect or not available. Moreover, such approaches aim
at predicting the total number of faults while our study
addresses the prediction of fault inflow.

3. Method

3.1. Context

This study investigates three projects carried out by
Ericsson AB. Hereafter, the projects are denoted as P1,
P2 and P3. The projects are targeted towards releases
of three systems that have been on the market for sev-
eral years. In this time, a number of releases have been
developed for each system. The systems are similarly
large, i.e. approximately half a million lines of code.

All projects under study follow a highly iterative
process. This means that development and testing ac-
tivities are carried out in short iterations. Within such
an iteration, a new system version, containing new func-
tionality and fixes of previously discovered faults, is de-
livered to test. These deliveries occur on weekly basis
or even more frequently, while testing of the new release
proceeds continuously.



The faults found during testing are reported to a
database and thus, fault data can be used for further
analysis.

3.2. Data

The models covered in this study are applied on
historical fault data. A software fault can be defined as
‘a manifestation of an error in software’ [1]. The fault
inflow represents the number of faults found in several
consecutive project weeks.

The data was collected based on the testing process
and grouped by week. For instance, P1 lasted 26 weeks,
whereas P2 and P3 lasted 30 weeks and 33 weeks re-
spectively. That is, the fault data used in this study com-
prise 26, 30 and 33 weeks.

The faults are marked with priority levels A, B and
C. Faults of level A are of high priority, B of medium
and faults of level C have low priority. It was decided
that the study only accounts for faults of priority A and
B, as those invoke the highest costs for the customer and
for Ericsson AB when they appear after release. The
number of faults was multiplied by a random factor and
thus, the values presented in this paper do not represent
the real amount of faults.

The fault data was accumulated for each week us-
ing calendar time. Many authors claim that other time
measurements such as execution time are more accurate
as the test effort is likely to be asynchronous [12, 20].
However, data to assess the test effort directly would
require a more extensive data collection, because in-
dustry does rarely store execution time. Besides, it has
been shown that SRGMs perform well based on calen-
dar time [17].

3.3. Model building

The purpose of this study was to find a method
for predicting fault inflow in highly iterative processes.
SRGMs were chosen as a possible tool as they can be
applied cost-effectively on available fault data. In con-
trast to the widely spread use of SRGMs, i.e. predicting
a release date for a software product, we want to ob-
serve how they perform in predicting fault inflow. A
list of the models that were used in this study can be
found in Table 1. These SRGMs are a synopsis of a list
of models that was provided by Wood [20]. They can
be further categorized into S-shaped and concave mod-
els respectively, which relates to the general outlook of
their curves. In particular, the curves of concave models
bend downwards, while curves of S-shaped models first
converge and become concave later [20].

We applied the SRGMs on fault data from the

projects P1, P2 and P3. The results showed a gener-
ally good performance of the models. However, we
observed that in the projects under study, the fault in-
flow appears to be fairly constant until release. This
means, the curve of cumulative faults does almost not
flatten until the release date. In other words, the curve
of cumulative fault inflow seems to increase linearly
throughout the project. Hence, we developed our own
model (see Table 1). This model is a linear model which
we believe better describes the fault inflow of our envi-
ronment.

The linear model was applied on exactly the same
data as the SRGMs in order to compare all candidates.
In particular, this study investigated the accuracy of the
different models in the context of different projects.

For the prediction, both the SRGMs and the lin-
ear model are fitted to historical fault data using the
least-squares method [11]. In general, estimates of the
models’ parameters from data can be obtained through
the maximum likelihood estimation or regression meth-
ods. Maximum likelihood methods statistically provide
the best approach to find estimated parameters for large
sample sizes [20]. The methods solve a number of equa-
tions simultaneously to estimate the parameters numer-
ically. However, due to the numerical approach, those
methods are also complex.

In this study, the least-squares regression method
is used because this is generally accepted to be the
best method for small- and medium-sized samples [11].
Each model is applied to historical fault data and
by choosing the correct parameters the squared error,
i.e. the difference between a model’s curve and the data,
is minimized. The result is a model that is fitted to the
available data. This fitted model can then be used to
build the prediction for the fault inflow.

For instance, a model’s performance is analyzed af-
ter week 10 of a 20 weeks’ project. That is, all fault data
until week 10 are available. The least-squares method is
used to fit the model on the first 10 weeks, which results
in a fitted model based on the known fault data. Next,
this fitted model is evaluated on the following weeks
until the release date, i.e. week 20 in this example.

3.4. Model evaluation

A model’s performance is evaluated based on how
much its curve differs from the curve of the actual fault
inflow. For this purpose, the mean magnitude relative
error (MMRE) is calculated as shown in Eq. (1) [10].

MMRE =

n
∑

i=1

|yi−ŷi|
yi

n
(1)



Table 1. Models used in this study: SRGMs and the linear model
Model Shape Structure Equation Reference

Gompertz S-Shaped Trend a(bct ), a≥ 0, 0≤ b≥ 1, c > 0 Kececioglu [9]

Delayed S-shaped S-Shaped NHPP a(1− (1+bt)e−bt), a≥ 0, b > 0 Yamada et al. [22]

Yamada exponential Concave NHPP a(1− e−bc(1−e(−dt)) ), a≥ 0, bc > 0, d > 0 Yamada et al. [23]

Goel-Okumoto Concave NHPP a(1− e−bt), a≥ 0, b > 0 Goel and Okumoto [7]

Linear Model linear Trend a+bt

where yi is the actual cumulative number of faults
in week i, ŷi is the predicted number of faults and n is
the total number of observations, i.e. test weeks. A high
value for the MMRE indicates that a model’s prediction
differs much from the actual fault inflow.

The research questions posed in Section 1 address
(a) the models’ performance for the remaining project
time, and (b) the performance regarding the short-term
predictions.

In the first step, the models are compared based
on the MMRE, which measures how much the models’
predictions differ from the actual fault inflow. The mod-
els are built based on the data at 40%, 60% and 80% of
the total project time. Next, the models are compared
based on the accuracy of their predictions for the re-
maining project time. In that way, it is also possible to
determine at which time in a project reliable predictions
can be obtained. Additionally, a statistical test is used
to identify significant differences of the models’ perfor-
mance.

In the second step, this study investigates how well
the models predict the short-term fault inflow. Here, the
MMRE is calculated for one, two and three weeks in
advance.

4. Results and analysis

4.1. Overall model performance

As described in Section 3.4, the models are com-
pared using the MMRE. The results for the MMRE are
shown in Table 2. Additionally, Figs. 1–3 visualize the
results of the comparison.

Fig. 1 presents the models’ curves compared to the
curve of the actual fault inflow at 40%, 60% and 80% of
the project time in P1 (see subfigures 1(a)–1(c) respec-
tively). At 40% of the project time, the linear model
overestimates the fault inflow. The concave models
overestimate as well, but they are closer to the actual
fault inflow, especially at the end of the project. The

S-shaped models demonstrate better performance, but
tend to underpredict towards the end of the project. At
60% of the project time, the linear model shows a good
fit to the actual fault inflow, while all other models un-
derestimate. At 80% of the project time, all models
underpredict the fault inflow, but the linear model still
shows the best fit.

The MMRE (see Table 2) confirms the results from
Fig. 1. At 40% in P1, the linear model performs worse
(MMRE = 28.9%) than the S-shaped models such as
the Gompertz model (MMRE = 16.0%) and the De-
layed S-shaped model (MMRE = 18.7%). However,
at 60% and 80%, the S-shaped models do not perform
well whereas the linear model performs best. As the
MMRE indicates, the concave models show a stable
performance at 40%, 60% and 80% of the project time
respectively (MMRE≈ 20%).

With respect to P2, the curves of the concave mod-
els and the linear model fit similarly well to the actual
inflow, while the S-shaped models tend to overestimate
or underestimate respectively (see Fig. 2).

As shown in Table 2, the MMREs for the concave
models and the linear model are equal at approximately
2.5% whereas the MMREs for the S-shaped models are
comparatively high.

The results for P3 are somewhat similar to the ones
of P1 as shown in Fig. 3. At 40% of the project time,
the linear model and the concave models overestimate,
while the S-shaped models underestimate the fault in-
flow towards the end of the project. Table 2 indicates
that the S-shaped and concave models show a similar
performance, while the linear model performs compar-
atively bad. At later times in the projects, the S-shaped
models show a generally worse performance. At 60%
of project time, the concave models perform best, and
at 80% project stage, the linear model performs best.

The average MMRE over all projects (see Table 2)
shows that the S-shaped models deliver the least accu-
rate predictions. The concave models deliver the most
stable predictions as they perform comparatively well



Table 2. Model performance in long-term fault inflow prediction based on MMRE (in %)
40% project time 60% project time 80% project time

Gom Del Yam G-O Lin Gom Del Yam G-O Lin Gom Del Yam G-O Lin

P1 16.0 18.7 20.8 20.8 28.9 26.9 28.5 19.6 19.7 6.4 24.0 28.8 20.3 20.7 9.1
P2 27.2 17.8 2.1 2.1 2.1 22.8 10.6 2.5 2.4 2.5 10.3 7.4 2.8 2.7 2.8
P3 11.6 9.4 10.8 14.2 25.7 20.5 17.5 5.7 5.7 9.2 18.9 19.0 9.2 9.2 5.6

Avg. 18.3 15.3 11.2 12.4 18.9 23.4 18.9 9.3 9.3 6.0 17.7 18.4 10.7 10.9 5.8

Table 3. Model performance in short-term fault inflow predictions based on MMRE (in %)
1 week prediction 2 weeks prediction 3 weeks prediction

Gom Del Yam G-O Lin Gom Del Yam G-O Lin Gom Del Yam G-O Lin

P1 12.5 11.5 10.2 10.3 10.9 14.5 12.5 12.0 12.1 12.5 18.8 15.8 16.4 16.6 14.4
P2 4.7 5.1 2.7 2.7 2.7 6.1 7.1 2.7 2.7 2.7 10.9 7.9 3.4 3.3 3.4
P3 5.6 5.2 2.8 3.1 10.0 6.8 6.2 3.4 3.8 10.2 9.2 8.5 3.1 3.6 10.5

Avg. 7.6 7.2 5.3 5.4 7.9 9.1 8.6 6.0 6.2 8.5 13.0 10.7 7.6 7.8 10.4

at 40%, 60% and 80% of the project time and with a
similar MMRE. The linear model tends to highly over-
estimate at 40% of the project time and, thus, delivers
the worst results. However, the linear model performs
best at 60% and 80% of the project time.

4.2. Statistical analysis

In order to give evidence on which of the models
performs significantly better, a statistical test is used. In
particular, the purpose is to determine, if there are sig-
nificant differences between the models’ predicted val-
ues. The Kolmogorov-Smirnov test indicates that the
available data is normally distributed and therefore, the
paired t-test was chosen to determine whether the mod-
els’ predictions differ significantly.

The paired t-test is conducted by pair-wise compar-
ison of the models’ predictions in each project at 40%,
60% and 80% of the project time. The significance level
is set to α = 5% (p < 0.05).

In comparison to the S-shaped models, the linear
model and the concave models provide significantly
better predictions throughout all projects at 60% and
80% respectively. At 40%, on the contrary, the results
are varying. That is, the S-shaped models perform sig-
nificantly better than the concave models as well as the
linear model in P1 and P3 respectively. With respect to
P2, however, the S-shaped models perform significantly
worse.

The comparison between the linear model and the
concave models does not reveal a particular tendency.

For instance, at 40% in P1, the linear model performs
significantly worse than the concave models. However,
at 60% and 80% respectively, it performs significantly
better. In P2, the linear model does not differ signif-
icantly from the concave models at any of the project
times. With respect to P3, the concave models are sig-
nificantly better than the linear model at 40% and 60%,
while the linear model is significantly more precise at
80%.

In summary, H0 as stated in Section 1 can be re-
jected as there are significant differences, especially re-
garding the S-shaped models.

4.3. Short-term predictions

Table 3 presents the models’ performance with re-
spect to short-term predictions.

Here, the MMRE refers to predictions made for
one, two and three weeks in advance. Each MMRE is
calculated as an average MMRE over all project stages
of 40%, 60% and 80%.

In P1, the Gompertz model performs worst with an
MMRE of 12.5%, 14.5% and 18.8% for all predictions
of one week, two weeks and three weeks in advance.
For one week and two weeks in advance, the concave
models perform best, while the linear model shows the
best performance for the prediction of three weeks in
advance.

Analogous to Section 4.1, the concave models and
the linear model show similar performance in P2 and
the S-shaped models perform comparatively bad. In



P3, for all predictions the concave models perform best,
while the linear model shows the worst results.

The average performance shows that the concave
models deliver the best results for all predictions of one
week, two weeks and three weeks in advance. The
S-shaped models on average perform worse for all pre-
dictions. The linear model shows a similar good perfor-
mance as the concave models for P1 and P2. However,
due to the bad performance in P3, the linear model has
the worst average performance.

5. Discussion

5.1. Overall predictions

The results of this study are promising. For the
overall prediction, we show that SRGMs can be used
for fault inflow prediction in highly iterative software
development processes. In our opinion, they show
good performance for fault inflow prediction because
the models’ predictions are based on data from the test-
ing process and therefore, reflect the testing process it-
self. However, until now the SRGMs were rather used
to determine a release date.

The results of this study further indicate that the
linear model performs similarly well compared to the
concave models. Furthermore, the concave models and
the linear model perform significantly better than the
S-shaped models at 60% and 80% of the project time.
That is, the concave models and the linear model are
reasonably more accurate for predicting fault inflow
in highly iterative processes. However, the study also
shows that the models are least accurate at 40% of the
project time. In our view, the reason for this observa-
tion is, that early in the project, historical data is less
substantial than in later stages.

In this study, the S-shaped models perform worse
compared to the concave models as well as the linear
model, especially when measured at 60% and 80% of
the project time. Additionally, they show unpredictable
behavior specifically at 40% of the project time. A
potential reason for that is the S-shaped character of
these models. Such an S-shape reflects a learning phase
within the testing process [9, 22], i.e. the test efficiency
should vary strongly during testing. This, however, as-
sumes that testing can be conducted on the complete
release on which a learning process can be based on.
Nevertheless, the test efficiency in the projects under
study does not vary, as new functionality is added con-
tinuously. Thus, the curve of the actual faults does not
become S-shaped. Another explanation is that the as-
sumptions made by the S-shaped models are violated
to such an extent that those kind of models become
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(a) Project 1—Prediction at 40% project time.
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(b) Project 1—Prediction at 60% project time.
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(c) Project 1—Prediction at 80% project time.0
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Figure 1. Project 1—Predictions at 40%, 60%
and 80% of project time



least accurate in the context of this study. For instance,
the Delayed S-shaped model [22] assumes that detected
faults are repaired immediately and without introducing
new faults, which is not realistic in practice.

The concave models show the most stable perfor-
mance at 40%, 60% and 80%. Still, they are not always
performing best. For instance, they perform worse in
some cases at 40% of the project time. An explanation
is that software development projects differ in such a
way that one particular model might not be suitable in
all cases [12]. In other words, there does not exist a
silver bullet for each scenario. However, the concave
models perform significantly better than the S-shaped
models at 60% and 80% of the project time. More-
over, they still perform well even though the curve of
cumulated faults shows almost no flattening of the curve
of cumulated faults until the late project stages. Fur-
thermore, the performance of the concave SRGMs indi-
cates that such concave models are applicable in prac-
tice even when the models’ assumptions are violated.
Thus, the results of our study confirm the conclusion
that was drawn in [17] and [2]. However, although the
projects for example in [2] clearly follow iterative de-
velopment processes, the activities occur more sequen-
tially, i.e. their projects base on less iterative processes
than in our study. This indicates, that especially con-
cave models are applicable in various environments.

The linear model performs worst at 40%, but best
at 60% and 80% of the project time. The performance
at 40% of the project time is not surprising as the curve
of cumulative fault inflow is not fully linear but slightly
flattens towards the end of the project. The reason for
this flattening is that less faults are found. Therefore,
the linear model tends to overpredict when applied early
in a project.

An explanation for the performance of the linear
model at 60% and 80% of the project time is that func-
tionality is continuously added, which in turn contin-
uously increases the number of faults. Based on the
results, we believe that the linear model performs es-
pecially well the shorter the iterations become, i.e. if
new versions of the software are delivered to testing on
weekly basis or even more often. In such a case, the
curve of cumulative faults does not flatten throughout
the project time, but remains nearly linear.

The concave models and the linear model perform
equally well, i.e. with no significant difference. Nev-
ertheless, SRGMs require a certain mathematical back-
ground and hence, practitioners might be reluctant to
use such models [12]. In our opinion, the linear model
presented in this study requires less mathematical back-
ground than the SRGMs under study. Furthermore, it
makes no unrealistic assumptions regarding the avail-
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(a) Project 2—Prediction at 40% project time.
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(b) Project 2—Prediction at 60% project time.
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(c) Project 2—Prediction at 80% project time.0
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Figure 2. Project 2—Predictions at 40%, 60%
and 80% of project time



able data. Consequently, the linear model is simpler to
use.

In summary, the linear model represents a valid al-
ternative for predicting the fault inflow in highly itera-
tive software development processes. However, for sit-
uations where concave models can be accepted, or ‘hid-
den’ in tools, they can potentially give better early fault
inflow prediction performance.

5.2. Short-term predictions

In addition to the overall performance in the predic-
tion, this study investigated the ability of SRGMs and
the linear model to make short-term predictions of fault
inflow in highly iterative processes.

The results show that the concave models performs
best for nearly all predictions in all projects. Analo-
gous to the overall performance, the S-shaped models
perform worse compared to the concave models.

The linear model shows a similar performance as
the concave models in the short-term prediction in P1
and P2. However, in P3, the linear performs worst,
while still being accurate. Thus, the linear model pro-
vides a valid alternative for the short-term predictions
as well.

As shown in Tables 2 and 3, the short-term predic-
tions of the SRGMs are considerably better than their
overall predictions. The reason for this is, in our opin-
ion, that the models are built on historical data, i.e. the
models get adjusted to the actual fault inflow. Conse-
quently, the models’ predictions are reasonably close to
the actual inflow in the next interval of measurement.
However, predictions for two weeks in advance are in
general less accurate than the prediction for one week,
and the predictions for three weeks in advance less ac-
curate than those for two weeks in advance respectively.

This finding is, by large, in line with the results pre-
sented in [16]. However, the predictions in our study
are more accurate. Besides, our results indicate that
SRGMs are suitable for predicting fault inflow as well.
Moreover, the models used in our study do not require
any project-related metrics.

5.3. Validity

With regard to our study, different types of validity
have to be taken into account [19]:

External validity refers to the ability to generalize
the results. Critical aspects, in this regard, are the selec-
tion of the candidate models and the study’s context. A
huge variety of SRGMs has been proposed in literature.
Since this study accounts for only four SRGMs, it can-
not be claimed that the results are valid for all existing
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(a) Project 3—Prediction at 40% project time.
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(b) Project 3—Prediction at 60% project time.
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(c) Project 3—Prediction at 80% project time.0
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Figure 3. Project 3—Predictions at 40%, 60%
and 80% of project time



SRGMs. The three projects under study were carried
out by one organization and thereby, following similar
development methods. However, the projects relate to
different products which indicates that the study’s re-
sults are valid in different contexts.

Construct validity describes the researchers’ ability
to measure what they are interested in measuring [19].
This relates to the way the candidate models are built
and how their performance is measured. The estima-
tion of the models’ parameters was conducted using
NCSS and the paired t-test was performed using Ex-
cel. Moreover, the data was tested for normality using
Datalab. Different applications might produce slightly
different results due to the approach used in the calcu-
lation. However, we believe that this effect does not
influence the results significantly.

In order to compare the models, we considered us-
ing the χ2 goodness-of-fit test [19] as a statistic for mea-
suring the models’ performance. This test was, how-
ever, not applicable on the available data, as the fre-
quencies, i.e. the difference between predicted and ac-
tual values should be greater than 5 [19]. Instead, the
models are compared based on the MMRE, which is
widely used as an indicator for the accuracy of predic-
tions [10]. However, some authors (e.g. [5]) claim, that
the MMRE is unreliable for comparing prediction mod-
els. Therefore, further evaluation of the models based
on different criteria is suggested. However, for indus-
trial acceptance of our results we think it is an advantage
to use a simple, and easy to understand, performance
evaluation measure.

Conclusion validity relates to the correctness of the
conclusions. Here, correctness means that the results
are statistically significant. In order to increase the con-
clusion validity, the paired t-test was conducted as de-
scribed in Section 4.2. For the short-term prediction, a
statistical test could not be applied, as the the data sam-
ple for the short-term prediction is very small and thus,
statistical tests would not be powerful [19].

6. Conclusions and further work

The goal of this study was to identify potential
models for predicting fault inflow in highly iterative
processes. Predicting fault inflow enables management
to plan for required resources, i.e. man-hours in ad-
vance. Thus, resource shortages could be prevented.
Moreover, management could introduce process im-
provements earlier in the project when the expected
fault inflow is higher than desired. Consequently, the
prediction of fault inflow provides for more accurate
cost estimation and control.

In our study, we suggested using SRGMs to pre-

dict fault inflow. Besides, this study presented a lin-
ear model. The models were evaluated based on their
ability to predict fault inflow for the remaining project
time. Additionally, it was investigated how the models
performed regarding short-term predictions.

First, this study evaluated the overall performance
of the models. The results show, that SRGMs can be
used to predict fault inflow. Moreover, it was shown
that the concave SRGMs perform significantly better
than S-shaped models. Additionally, it was found that
a linear model provides a valid alternative to the con-
cave SRGMs. We evaluated the models’ performance
at 40%, 60% and 80% of the project time. At 40% of
the project time, the models showed varying results and
none of the models were found to be suitable for all
projects in this study. At 60% and 80% respectively,
the S-shaped models perform worst, whereas the linear
model and the concave models perform better. The con-
cave models generally proved to be most stable.

Second, the results indicate, that SRGMs can be
used to make short-term predictions in iterative pro-
cesses. The explanation is that the models are built on
fault data and, consequently, perform well in the pre-
dictions for one, two and three weeks in advance. How-
ever, the predictions become less accurate the further in
advance the predictions are made. Here, the concave
models outperform the S-shaped models and the linear
model provides a valid alternative.

Thus, we recommend to use concave models and
the linear model, respectively, to predict fault inflow.
We believe, that the linear model is especially simple to
use and cost-effective. However, a dynamic validation
of the models is recommended, i.e. the models have to
be evaluated within running projects. In that way, the
models’ usability for predicting fault inflow can be in-
vestigated in more detail.

Moreover, further work could be targeted towards
automation. In particular, this concerns the models’ pa-
rameter estimation, extracting fault data and the actual
application of the models. The only condition here is
that data on detected faults is already available, e.g. in
a database. Besides, further work is suggested to eval-
uate SRGMs and the linear model to predict the total
number of faults in iterative software development pro-
cesses. Based on our results, the models of this study
seem to be suitable for this prediction as well.
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